Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(3): e1005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465381

RESUMO

Embryonic limb bud-derived micromass cultures are valuable tools for investigating cartilage development, tissue engineering, and therapeutic strategies for cartilage-related disorders. This collection of fine-tuned protocols used in our laboratories outlines step-by-step procedures for the isolation, expansion, and differentiation of primary mouse limb bud cells into chondrogenic micromass cultures. Key aspects covered in these protocols include synchronized fertilization of mice (Basic Protocol 1), tissue dissection, cell isolation, micromass formation, and culture optimization parameters, such as cell density and medium composition (Basic Protocol 2). We describe techniques for characterizing the chondrogenic differentiation process by histological analysis (Basic Protocol 3). The protocols also address common challenges encountered during the process and provide troubleshooting strategies. This fine-tuned comprehensive protocol serves as a valuable resource for scientists working in the fields of developmental biology, cartilage tissue engineering, and regenerative medicine, offering an updated methodology for the study of efficient chondrogenic differentiation and cartilage tissue regeneration. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synchronized fertilization of mice Basic Protocol 2: Micromass culture of murine embryonic limb bud-derived cells Basic Protocol 3: Qualitative assessment of cartilage matrix production using Alcian blue staining.


Assuntos
Cartilagem , Condrogênese , Animais , Camundongos , Células Cultivadas , Diferenciação Celular , Mamíferos
2.
Curr Protoc ; 3(7): e835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37427867

RESUMO

Much of the skeletal system develops by endochondral ossification, a process that takes place in early fetal life. This makes the early stages of chondrogenesis, i.e., when chondroprogenitor mesenchymal cells differentiate to chondroblasts, challenging to study in vivo. In vitro methods for the study of chondrogenic differentiation have been available for some time. There is currently high interest in developing fine-tuned methodology that would allow chondrogenic cells to rebuild articular cartilage and restore joint functionality. The micromass culture system that relies on embryonic limb bud-derived chondroprogenitor cells is a popular method for the study of the signaling pathways that control the formation and maturation of cartilage. In this protocol, we describe a technique fine-tuned in our laboratory for culturing limb bud-derived mesenchymal cells from early-stage chick embryos in high density (Basic Protocol 1). We also provide a fine-tuned method for high-efficiency transient transfection of cells before plating using electroporation (Basic Protocol 2). In addition, protocols for histochemical detection of cartilage extracellular matrix using dimethyl methylene blue, Alcian blue, and safranin O are also provided (Basic Protocol 3 and Alternate Protocols 1 and 2, respectively). Finally, a step-by-step guide on a cell viability/proliferation assay using MTT reagent is also described (Basic Protocol 4). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Micromass culture of chick embryonic limb bud-derived cells Basic Protocol 2: Transfection of cells with siRNA constructs using electroporation prior to micromass culturing Basic Protocol 3: Qualitative and quantitative assessment of cartilage matrix production using dimethyl methylene blue staining and image analysis Alternate Protocol 1: Qualitative assessment of cartilage matrix production using Alcian blue staining Alternate Protocol 2: Qualitative assessment of cartilage matrix production using safranin O staining Basic Protocol 4: Measurement of mitochondrial activity with the MTT assay.


Assuntos
Galinhas , Azul de Metileno , Animais , Embrião de Galinha , Azul de Metileno/metabolismo , Azul Alciano/metabolismo , Células Cultivadas , Cartilagem/metabolismo , Regeneração
3.
Nucleic Acids Res ; 51(8): 3590-3617, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987858

RESUMO

Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering.


Assuntos
Condrogênese , Transcriptoma , Condrogênese/genética , Cartilagem/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células Cultivadas , Condrócitos/metabolismo
4.
J Pineal Res ; 73(4): e12827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030553

RESUMO

The biomechanical environment plays a key role in regulating cartilage formation, but the current understanding of mechanotransduction pathways in chondrogenic cells is incomplete. Among the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents at both transcript and protein levels. We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 h for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes and proteins, the chondrogenic markers SOX9 and ACAN also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. This study suggests that an optimal biomechanical environment enhances tissue homoeostasis and histogenesis during chondrogenesis at least partially through entraining the molecular clockwork.


Assuntos
Relógios Circadianos , Melatonina , Condrogênese , Mecanotransdução Celular , Melatonina/farmacologia , Fatores de Transcrição/metabolismo , Condrócitos/metabolismo , Células Cultivadas , Diferenciação Celular
5.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685658

RESUMO

We investigated the gene expression pattern of selected enzymes involved in DNA methylation and the effects of the DNA methylation inhibitor 5-azacytidine during in vitro and in vivo cartilage formation. Based on the data of a PCR array performed on chondrifying BMP2-overexpressing C3H10T1/2 cells, the relative expressions of Tet1 (tet methylcytosine dioxygenase 1), Dnmt3a (DNA methyltransferase 3), and Ogt (O-linked N-acetylglucosamine transferase) were further examined with RT-qPCR in murine cell line-based and primary chondrifying micromass cultures. We found very strong but gradually decreasing expression of Tet1 throughout the entire course of in vitro cartilage differentiation along with strong signals in the cartilaginous embryonic skeleton using specific RNA probes for in situ hybridization on frozen sections of 15-day-old mouse embryos. Dnmt3a and Ogt expressions did not show significant changes with RT-qPCR and gave weak in situ hybridization signals. The DNA methylation inhibitor 5-azacytidine reduced cartilage-specific gene expression and cartilage formation when applied during the early stages of chondrogenesis. In contrast, it had a stimulatory effect when added to differentiated chondrocytes, and quantitative methylation-specific PCR proved that the DNA methylation pattern of key chondrogenic marker genes was altered by the treatment. Our results indicate that the DNA demethylation inducing Tet1 plays a significant role during chondrogenesis, and inhibition of DNA methylation exerts distinct effects in different phases of in vitro cartilage formation.


Assuntos
Condrogênese/genética , DNA Metiltransferase 3A/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , N-Acetilglucosaminiltransferases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Azacitidina/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Condrogênese/efeitos dos fármacos , Metilação de DNA/genética , DNA Metiltransferase 3A/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Modelos Biológicos , N-Acetilglucosaminiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo
6.
Front Oncol ; 11: 681603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616669

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide which is distributed throughout the body. PACAP influences development of various tissues and exerts protective function during cellular stress and in some tumour formation. No evidence is available on its role in neural crest derived melanocytes and its malignant transformation into melanoma. Expression of PACAP receptors was examined in human skin samples, melanoma lesions and in a primary melanocyte cell culture. A2058 and WM35 melanoma cell lines, representing two different stages of melanoma progression, were used to investigate the effects of PACAP. PAC1 receptor was identified in melanocytes in vivo and in vitro and in melanoma cell lines as well as in melanoma lesions. PACAP administration did not alter viability but decreased proliferation of melanoma cells. With live imaging random motility, average speed, vectorial distance and maximum distance of migration of cells were reduced upon PACAP treatment. PACAP administration did not alter viability but decreased proliferation capacity of melanoma cells. On the other hand, PACAP administration decreased the migration of melanoma cell lines towards fibronectin chemoattractant in the Boyden chamber. Furthermore, the presence of the neuropeptide inhibited the invasion capability of melanoma cell lines in Matrigel chambers. In summary, we provide evidence that PACAP receptors are expressed in melanocytes and in melanoma cells. Our results also prove that various aspects of the cellular motility were inhibited by this neuropeptide. On the basis of these results, we propose PACAP signalling as a possible target in melanoma progression.

7.
J Alzheimers Dis ; 81(3): 1195-1209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33896841

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative illness, with several peripheral pathological signs such as accumulation of amyloid-ß (Aß) plaques in the kidney. Alterations of transforming growth factor ß (TGFß) signaling in the kidney can induce fibrosis, thus disturbing the elimination of Aß. OBJECTIVE: A protective role of increased physical activity has been proven in AD and in kidney fibrosis, but it is not clear whether TGFß signalization is involved in this effect. METHODS: The effects of long-term training on fibrosis were investigated in the kidneys of mice representing a model of AD (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) by comparing wild type and AD organs. Alterations of canonical and non-canonical TGFß signaling pathways were followed with PCR, western blot, and immunohistochemistry. RESULTS: Accumulation of collagen type I and interstitial fibrosis were reduced in kidneys of AD mice after long-term training. AD induced the activation of canonical and non-canonical TGFß pathways in non-trained mice, while expression levels of signal molecules of both TGFß pathways became normalized in trained AD mice. Decreased amounts of phosphoproteins with molecular weight corresponding to that of tau and the cleaved C-terminal of AßPP were detected upon exercising, along with a significant increase of PP2A catalytic subunit expression. CONCLUSION: Our data suggest that physical training has beneficial effects on fibrosis formation in kidneys of AD mice and TGFß signaling plays a role in this phenomenon.


Assuntos
Doença de Alzheimer/patologia , Rim/patologia , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia
8.
Cartilage ; 13(2_suppl): 53S-67S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059614

RESUMO

OBJECTIVE: Circadian rhythms in cartilage homeostasis are hypothesized to temporally segregate and synchronize the activities of chondrocytes to different times of the day, and thus may provide an efficient mechanism by which articular cartilage can recover following physical activity. While the circadian clock is clearly involved in chondrocyte homeostasis in health and disease, it is unclear as to what roles it may play during early chondrogenesis. DESIGN: The purpose of this study was to determine whether the rhythmic expression of the core circadian clock was detectable at the earliest stages of chondrocyte differentiation, and if so, whether a synchronized expression pattern of chondrogenic transcription factors and developing cartilage matrix constituents was present during cartilage formation. RESULTS: Following serum shock, embryonic limb bud-derived chondrifying micromass cultures exhibited synchronized temporal expression patterns of core clock genes involved in the molecular circadian clock. We also observed that chondrogenic marker genes followed a circadian oscillatory pattern. Clock synchronization significantly enhanced cartilage matrix production and elevated SOX9, ACAN, and COL2A1 gene expression. The observed chondrogenesis-promoting effect of the serum shock was likely attributable to its synchronizing effect on the molecular clockwork, as co-application of small molecule modulators (longdaysin and KL001) abolished the stimulating effects on extracellular matrix production and chondrogenic marker gene expression. CONCLUSIONS: Results from this study suggest that a functional molecular clockwork plays a positive role in tissue homeostasis and histogenesis during early chondrogenesis.


Assuntos
Cartilagem Articular , Relógios Circadianos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrogênese , Relógios Circadianos/genética , Matriz Extracelular/metabolismo
9.
J Mol Neurosci ; 71(8): 1543-1555, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31808034

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally secreted signaling peptide and has important regulatory roles in the differentiation of the central nervous system and its absence results in disorders in femur development. PACAP has an important function in prevention of oxidative stress or mechanical stress in chondrogenesis but little is known about its function in bone regeneration. A new callus formation model was set to investigate its role in bone remodeling. Fracturing was 5 mm distal from the proximal articular surface of the tibia and the depth was 0.5 mm. Reproducibility of callus formation was investigated with CT 3, 7, and 21 days after the operation. Absence of PACAP did not alter the alkaline phosphatase (ALP) activation in PACAP KO healing process. In developing callus, the expression of collagen type I increased in wild-type (WT) and PACAP KO mice decreased to the end of healing process. Expression of the elements of BMP signaling was disturbed in the callus formation of PACAP KO mice, as bone morphogenic protein 4 (BMP4) and 6 showed an early reduction in bone regeneration. However, elevated Smad1 expression was demonstrated in PACAP KO mice. Our results indicate that PACAP KO mice show various signs of disturbed bone healing and suggest PACAP compensatory and fine tuning effects in proper bone regeneration.


Assuntos
Regeneração Óssea , Calo Ósseo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Calo Ósseo/fisiologia , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo
10.
Front Cell Neurosci ; 14: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922265

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with typical amyloid beta (Aß) aggregations. Elimination of the Aß precursors via the kidneys makes the organ a potential factor in the systemic degeneration leading to AD. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neuroprotective effects in AD and plays a protective role in kidney pathologies. Increased physical activity is preventive of the formation of AD, but its detailed mechanism and possible connections with PACAP have not been clarified. In the kidneys of AD mice, the effects of physical activity were investigated by comparing wild-type and AD organs. Aß plaque formation was reduced in AD kidneys after increased training (TAD). Mechanotransduction elevated PACAP receptor expression in TAD mice and normalized the protein kinase A (PKA)-mediated pathways. BMP4/BMPR1 elevation activated Smad1 expression and normalized collagen type IV in TAD animals. In conclusion, our data suggest that elevated physical activity can prevent the AD-induced pathological changes in the kidneys via, at least in part, the activation of PACAP-BMP signaling crosstalk.

11.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785075

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer's disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Transdução de Sinais/genética , Doenças Testiculares/metabolismo , Testículo/metabolismo , Animais , Contagem de Células , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Condicionamento Físico Animal , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fatores de Transcrição SOX9/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/patologia
12.
Cell Commun Signal ; 17(1): 166, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842918

RESUMO

BACKGROUND: In vitro chondrogenesis depends on the concerted action of numerous signalling pathways, many of which are sensitive to the changes of intracellular Ca2+ concentration. N-methyl-D-aspartate (NMDA) glutamate receptor is a cation channel with high permeability for Ca2+. Whilst there is now accumulating evidence for the expression and function of NMDA receptors in non-neural tissues including mature cartilage and bone, the contribution of glutamate signalling to the regulation of chondrogenesis is yet to be elucidated. METHODS: We studied the role of glutamatergic signalling during the course of in vitro chondrogenesis in high density chondrifying cell cultures using single cell fluorescent calcium imaging, patch clamp, transient gene silencing, and western blotting. RESULTS: Here we show that key components of the glutamatergic signalling pathways are functional during in vitro chondrogenesis in a primary chicken chondrogenic model system. We also present the full glutamate receptor subunit mRNA and protein expression profile of these cultures. This is the first study to report that NMDA-mediated signalling may act as a key factor in embryonic limb bud-derived chondrogenic cultures as it evokes intracellular Ca2+ transients, which are abolished by the GluN2B subunit-specific inhibitor ifenprodil. The function of NMDARs is essential for chondrogenesis as their functional knock-down using either ifenprodil or GRIN1 siRNA temporarily blocks the differentiation of chondroprogenitor cells. Cartilage formation was fully restored with the re-expression of the GluN1 protein. CONCLUSIONS: We propose a key role for NMDARs during the transition of chondroprogenitor cells to cartilage matrix-producing chondroblasts.


Assuntos
Condrogênese/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/análise , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Condrogênese/efeitos dos fármacos , Ácido Glutâmico/análise , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/agonistas , Transdução de Sinais/efeitos dos fármacos
13.
Geroscience ; 41(6): 775-793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655957

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue aging. PACAP takes part in the regulation of chondrogenesis, which prevents insufficient cartilage formation caused by oxidative and mechanical stress. PACAP knockout (KO) mice have been shown to display early aging signs affecting several organs. In the present work, we investigated articular cartilage of knee joints in young and aged wild-type (WT) and PACAP KO mice. A significant increase in the thickness of articular cartilage was detected in aged PACAP gene-deficient mice. Amongst PACAP receptors, dominantly PAC1 receptor was expressed in WT knee joints and a remarkable decrease was found in aged PACAP KO mice. Expression of PKA-regulated transcription factors, Sox5, Sox9 and CREB, decreased both in young and aged gene deficient mice, while Sox6, collagen type II and aggrecan expressions were elevated in young but were reduced in aged PACAP KO animals. Increased expression of hyaluronan (HA) synthases and HA-binding proteins was detected parallel with an elevated presence of HA in aged PACAP KO mice. Expression of bone related collagens (I and X) was augmented in young and aged animals. These results suggest that loss of PACAP signaling results in dysregulation of cartilage matrix composition and may transform articular cartilage in a way that it becomes more prone to degenerate.


Assuntos
Envelhecimento/metabolismo , Cartilagem Articular/metabolismo , Condrogênese/fisiologia , Regulação da Expressão Gênica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Western Blotting , Cartilagem Articular/patologia , DNA/genética , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Transdução de Sinais
14.
Differentiation ; 107: 24-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31152959

RESUMO

Bone graft substitutes and bone void fillers are predominantly used to treat bone defects and bone fusion in orthopaedic surgery. Some aragonite-based scaffolds of coralline exoskeleton origin exhibit osteoconductive properties and are described as useful bone repair scaffolds. The purpose of this study was to evaluate the in vitro osteogenic potential of the bone phase of a novel aragonite-based bi-phasic osteochondral scaffold (Agili-C™, CartiHeal Ltd.) using adult human bone marrow-derived mesenchymal stem cells (MSCs). Analyses were performed at several time intervals: 3, 7, 14, 21, 28 and 42 days post-seeding. Osteogenic differentiation was assessed by morphological characterisation using light microscopy after Alizarin red and von Kossa staining, and scanning electron microscopy. The transcript levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), bone gamma-carboxyglutamate (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were determined by quantitative PCR. Proliferation was assessed by a thymidine incorporation assay and proliferating cell nuclear antigen (PCNA) immunocytochemistry. Our results demonstrate that the bone phase of the bi-phasic aragonite-based scaffold supports osteogenic differentiation and enhanced proliferation of bone marrow-derived MSCs at both the molecular and histological levels. The scaffold was colonized by differentiating MSCs, suggesting its suitability for incorporation into bone voids to accelerate bone healing, remodelling and regeneration. The mechanism of osteogenic differentiation involves scaffold surface modification with de novo production of calcium phosphate deposits, as revealed by energy dispersive spectroscopy (EDS) analyses. This novel coral-based scaffold may promote the rapid formation of high quality bone during the repair of osteochondral lesions.


Assuntos
Carbonato de Cálcio , Células-Tronco Mesenquimais/citologia , Osteogênese , Tecidos Suporte , Substitutos Ósseos/química , Carbonato de Cálcio/química , Fosfatos de Cálcio/metabolismo , Células Cultivadas , Humanos , Engenharia Tecidual
15.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621194

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide also secreted by non-neural cells, including chondrocytes. PACAP signaling is involved in the regulation of chondrogenesis, but little is known about its connection to matrix turnover during cartilage formation and under cellular stress in developing cartilage. We found that the expression and activity of hyaluronidases (Hyals), matrix metalloproteinases (MMP), and aggrecanase were permanent during the course of chondrogenesis in primary chicken micromass cell cultures, although protein levels changed daily, along with moderate and relatively constant enzymatic activity. Next, we investigated whether PACAP influences matrix destructing enzyme activity during oxidative and mechanical stress in chondrogenic cells. Exogenous PACAP lowered Hyals and aggrecanase expression and activity during cellular stress. Expression and activation of the majority of cartilage matrix specific MMPs such as MMP1, MMP7, MMP8, and MMP13, were also decreased by PACAP addition upon oxidative and mechanical stress, while the activity of MMP9 seemed not to be influenced by the neuropeptide. These results suggest that application of PACAP can help to preserve the integrity of the newly synthetized cartilage matrix via signaling mechanisms, which ultimately inhibit the activity of matrix destroying enzymes under cellular stress. It implies the prospect that application of PACAP can ameliorate articular cartilage destruction in joint diseases.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Condrócitos/efeitos dos fármacos , Estresse Oxidativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Estresse Mecânico , Animais , Proteínas Reguladoras de Apoptose/administração & dosagem , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Técnicas de Cultura de Células , Embrião de Galinha , Condrócitos/metabolismo , Endopeptidases/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Hialuronoglucosaminidase/metabolismo , Peróxido de Hidrogênio/farmacologia , Metaloproteinases da Matriz/metabolismo , Oxidantes/farmacologia
16.
J Neuroinflammation ; 15(1): 335, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509328

RESUMO

OBJECTIVE: The regulatory role of capsaicin-sensitive peptidergic sensory nerves has been shown in acute inflammation, but little is known about their involvement in T/B-cell driven autoimmune arthritis. This study integratively characterized the function of these nerve endings in the proteoglycan-induced chronic arthritis (PGIA), a translational model of rheumatoid arthritis. METHODS: Peptidergic afferents were defunctionalized by resiniferatoxin (RTX) pretreatment in BALB/c mice, PGIA was induced by repeated antigen challenges. Hind paw volume, arthritis severity, grasping ability and the mechanonociceptive threshold were monitored during the 17-week experiment. Myeloperoxidase activity, vascular leakage and bone turnover were evaluated by in vivo optical imaging. Bone morphology was assessed using micro-CT, the intertarsal small joints were processed for histopathological analysis. RESULTS: Following desensitization of the capsaicin-sensitive afferents, ankle edema, arthritis severity and mechanical hyperalgesia were markedly diminished. Myeloperoxidase activity was lower in the early, but increased in the late phase, whilst plasma leakage and bone turnover were not altered. Desensitized mice displayed similar bone spurs and erosions, but increased trabecular thickness of the tibia and bony ankylosis of the spine. Intertarsal cartilage thickness was not altered in the model, but desensitization increased this parameter in both the non-arthritic and arthritic groups. CONCLUSION: This is the first integrative in vivo functional and morphological characterization of the PGIA mouse model, wherein peptidergic afferents have an important regulatory function. Their overall effect is proinflammatory by increasing acute inflammation, immune cell activity and pain. Meanwhile, their activation decreases spinal ankylosis, arthritis-induced altered trabecularity, and cartilage thickness in small joints.


Assuntos
Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Capsaicina/farmacologia , Proteoglicanas/toxicidade , Fármacos do Sistema Sensorial/farmacologia , Limiar Sensorial/efeitos dos fármacos , Animais , Tornozelo/diagnóstico por imagem , Cartilagem/patologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Neurotoxinas/farmacologia , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Coluna Vertebral/diagnóstico por imagem
17.
Int J Mol Sci ; 19(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150589

RESUMO

: Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with diverse developmental roles, including differentiation of skeletal elements. It is a positive regulatory factor of chondrogenesis and osteogenic differentiation in vitro, but little is known about its in vivo role in bone formation. In our experiments, diaphyses of long bones from hind limbs of PACAP gene-deficient mice showed changes in thickness and increased staining intensity. Our main goal was to perform a detailed morphological and molecular biological analysis of femurs from PACAP knockout (KO) and wild type (WT) mice. Transverse diameter and anterior cortical bone thickness of KO femurs showed significant alterations with disturbed Ca2+ accumulation and collagen type I expression. Higher expression and activity of alkaline phosphatase were also observed, accompanied by increased fragility PACAP KO femurs. Increased expression of the elements of bone morphogenic protein (BMP) and hedgehog signalling was also observed, and are possibly responsible for the compensation mechanism accounting for the slight morphological changes. In summary, our results show that lack of PACAP influences molecular and biomechanical properties of bone matrix, activating various signalling cascade changes in a compensatory fashion. The increased fragility of PACAP KO femur further supports the role of endogenous PACAP in in vivo bone formation.


Assuntos
Condrogênese/genética , Osteogênese/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transdução de Sinais/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Expressão Gênica , Camundongos Knockout , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Microtomografia por Raio-X
18.
Int J Mol Sci ; 19(7)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-29966365

RESUMO

Heterotetrameric N-methyl-d-aspartate type glutamate receptors (NMDAR) are cationic channels primarily permeable for Ca2+. NR1 and NR3 subunits bind glycine, while NR2 subunits bind glutamate for full activation. As NR1 may contain a nuclear localization signal (NLS) that is recognized by importin-α, our aim was to investigate if NMDARs are expressed in the nuclei of melanocytes and melanoma cells. A detailed NMDAR subunit expression pattern was examined by RT-PCRs (reverse transcription followed by polymerase chain reaction), fractionated western blots and immunocytochemistry in human epidermal melanocytes and in human melanoma cell lines A2058, HT199, HT168M1, MEL35/0 and WM35. All kind of NMDAR subunits are expressed as mRNAs in melanocytes, as well as in melanoma cells, while NR2B protein remained undetectable in any cell type. Western blots proved the exclusive presence of NR1 and NR3B in nuclear fractions and immunocytochemistry confirmed NR1-NR3B colocalization inside the nuclei of all melanoma cells. The same phenomenon was not observed in melanocytes. Moreover, protein database analysis revealed a putative NLS in NR3B subunit. Our results support that unusual, NR1-NR3B composed NMDAR complexes are present in the nuclei of melanoma cells. This may indicate a new malignancy-related histopathological feature of melanoma cells and raises the possibility of a glycine-driven, NMDA-related nuclear Ca2+-signalling in these cells.


Assuntos
Melanoma/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Melanócitos/metabolismo , Melanoma/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Sci Rep ; 7: 39863, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067251

RESUMO

Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage.


Assuntos
Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Analgésicos não Narcóticos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Hidrazinas/uso terapêutico , Articulações/patologia , Oxazóis/uso terapêutico , Oximas/uso terapêutico , Animais , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Adjuvante de Freund/imunologia , Humanos , Hidrazinas/farmacologia , Articulações/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Oxazóis/farmacologia , Oximas/farmacologia
20.
Int J Oral Sci ; 8(1): 24-31, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025262

RESUMO

Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes.


Assuntos
Chaperonina 60/farmacologia , Odontogênese/efeitos dos fármacos , Animais , Western Blotting , Imuno-Histoquímica , Hibridização In Situ , Incisivo , Camundongos , Germe de Dente/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...